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Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides
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We investigate the effects of the optical Kerr nonlinearity in a coupled-resonator optical waveguide
~CROW!. Under certain conditions, there exists a stationary spatial distribution of the field whose envelope
does not change with time—a super-resonant mode. The analysis does not indicate the existence of traveling
hyperbolic-secant solitons of the Schro¨dinger type.

DOI: 10.1103/PhysRevE.66.046610 PACS number~s!: 42.79.Gn, 42.70.Qs, 42.25.Bs, 42.65.Wi
n
nic
h
ap
p-
te
n

nt
c
m
in

lly
.e

a
lt,
om

o
ri

o
l-
e

x

.
to

in
d
ip
pe
a

is
-
h
yz

nte-
Fou-
tor
ili-
g

the
the
d

the
an

the
-
ne

e-
n

-
nic
the
he
I. INTRODUCTION

A coupled-resonator optical waveguide~CROW! @1–3# is
composed of a periodic array of isolated structural eleme
~e.g., high-Q resonators such as defects in photo
crystals—see Fig. 1! weakly coupled to one another. Suc
waveguides are naturally described by the tight binding
proximation @4#, in direct correspondence with the descri
tion of electrons in a strong periodic potential in solid sta
physics@5#. Experimental demonstrations of the CROW co
cept and corroboration of the analytical model were rece
presented@6,7#. Prior to the introduction of the generi
CROW family of waveguides, the tight binding formalis
was applied to the description of deep superstructure grat
@8#.

The dispersion relationship in CROWs is intrinsica
nonlinear, but the propagation of localized excitations, i
optical pulses can be characterized nonperturbatively to
orders of dispersion@9#. This is a somewhat surprising resu
and it leads to a description of the distortion that results fr
the nonlinear dispersion relationship. Weighted sums
Bessel functions take the role of cosines in the Fourier-se
decomposition of the propagating field@10#.

In optical fibers and similar waveguides, the effects
~anomalous! group-velocity dispersion can be exactly ba
anced by the self-phase modulation induced by the Kerr
fect, an intensity-dependent change in the refractive inde
the material. This is the basis for the formation of the~fun-
damental! Schrödinger soliton in optical fibers, for instance
Here, we investigate the Kerr effect in coupled-resona
waveguides, with particular emphasis on determin
whether self-phase modulation can compensate for the
tortion consequent of the nonlinear dispersion relationsh

Such solutions would lead to the existence of envelo
that can exist or propagate without distortion in CROWs
eigensolutions of a nonlinear propagation equation~solitary
waves and solitons!. Whether such soliton pulse shapes ex
or not, from a practical viewpoint~since the material disper
sion also plays a role!, nonlinear propagation in suc
waveguides can be controlled, as in the linear cases anal
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thus far, by choosing~or changing! the structural properties
of the waveguide, e.g., inter-resonator spacing, overlap i
grals between adjacent resonator eigenmodes, and the
rier spectrum of the initial excitation. Coupled-resona
waveguides therefore offer a wider range of design possib
ties for the realization of all-optical information processin
devices than available thus far.

In considering the various choices in which to expand
field, we choose the propagating Bloch wave solutions of
CROWs without optical nonlinearities, which are derive
from the tight-binding approximation@1–3#. We take the
field to be a superposition of such waves with slowly~time-!
varying coefficients. This expansion has the merit that in
absence of nonlinearities, each field in this expansion is
eigenmode.

II. WAVEGUIDE MODES AND LINEAR PROPAGATION

We assume that the structural elements comprising
periodic waveguide of lengthL, e.g., defects in a 2D photo
nic crystal slab with index confinement in the out-of-pla
direction, are identical and lie along thez axis ~unit vector
ez) separated by a distanceR. Together with its time-
evolution factor, the waveguide mode of the linear wav
guide ~an eigenmode of a time-independent Hamiltonia!
fk(r ) at a particular propagation constantk is written as a
linear combination of the individual eigenmodesEres(r ) of

FIG. 1. Schematic of an infinitely-long 1D CROW with period
icity R consisting of defect cavities embedded in a 2D photo
crystal. The dielectric material in the defect cavities exhibits
nonlinear Kerr effect, i.e., its refractive index is modified by t
optical intensity.
©2002 The American Physical Society10-1
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the elements that comprise the structure@3,5#,

e2 ivktfk~r !5e2 ivkt(
n

exp~ inR k•ez!

3Eres~r2nRez!, ~1!

where the summation overn runs over theN5L/R structural
elements and we consider only a single bound state in e
individual element. As expected, Eq.~1! has the Bloch form
@5#.

The dispersion relationship for a CROW mode aroun
central wave numberk0 is @1#

vk01K5V~12Da/2!1Vk cos@~k01K !R#[v0

1Dv cos@~k01K !R#, ~2!

whereV is the eigenfrequency of the individual resonato
In Eq. ~2!, Da and k are overlap integrals involving th
individual resonator modes and the spatial variation of
dielectric constant,

Da5E d3r @ewg~r2Rez!2e res~r2Rez!#uEres~r !u2,

k5E d3r @e res~r2Rez!2ewg~r2Rez!#

3Eres~r !•Eres~r2Rez!, ~3!

wheree res is the dielectric constant of the individual reson
tors, andewg is the dielectric constant of the waveguide. W
restrict the range ofK to the first Brillouin zone,uKuR,p.
One may usually assume for convenience~as in @3#! that
k0R52mp, for some integerm, but in this paper we will
work in the general case, unless stated otherwise.

The field describing a pulseE(r ,t) is written as a super
position of waveguide modesfk(r ) within the Brillouin
zone, and using Eq.~2!,

E~r ,t !'E dk

2p
e2 ivktckfk~r !

5e2 iv0tE
2p/R

p/R dK

2p
@e2 iDvtcos[(k01K)R]ck01Kfk01K~r !#.

~4!

The boundary conditions that arise in pulse propaga
problems typically specify a pulse shape at ther50 cross
section of the waveguide and centered at the optical
quencyv0,

E~r50,t !5e2 iv0tE~z50,t !û, ~5!

whereû is a unit-magnitude vector that describes the vec
rial nature of the field atr50.

Finding the coefficientsck01K in Eq. ~4! based on the
boundary condition, Eq.~5!, is relatively simple when we
approximate the dispersion relationship, Eq.~2!, as linear
04661
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@11#. It is also possible to solve this problem without makin
this approximation@9#, and this is the framework which we
will use to analyzenonlinearpropagation in this paper. Th
form of the dispersion relationship, Eq.~2!, is the signature
of all tight-binding models based on nearest neighbor in
actions@5#, and it is important to keep the full form in de
scribing those nonlinear phenomena which depend on a
ance between nonlinear and dispersive phase-modula
effects in a single wave form, e.g., solitons.

III. FORMULATION OF THE NONLINEAR PROPAGATION
PROBLEM

Since nonlinear phenomena such as the Kerr ef
change the relative weights of the eigenmodes Eq.~1! as the
wave form evolves with time, we introduce a time depe
dency in the superposition coefficientsck appearing in Eq.
~4!. @We assume that the Hilbert space of solutions
spanned by the eigenmode set Eq.~1!.# We write

E~r ,t !5e2 iv0tE
2p/R

p/R dK

2p
@e2 iDvt cos[(k01K)R]

3ck01K~ t ! fk01K~r !#. ~6!

Equation~6! leads to a differential equation describing th
evolution of the time-varying coefficients, driven by the no
linear ~Kerr! polarization,

dck01K~ t !

dt
5 igE E

2p/R

p/R dK1

2p

dK2

2p
exp†2 ikVt

3$2cos@~k01K1!R#1cos@~k01K2!R#

1cos@~k01K3!R#2cos@~k01K !R#%‡

3ck01K1
~ t !* ck01K2

~ t !ck01K3
~ t !, ~7!

whereK11K5K21K3 andg is the nonlinearity coefficient
in the CROW geometry, described in the Appendix.

IV. LINEAR AND NONLINEAR EVOLUTION

A. Linear case

We first note that in the linear case, wheng50, the so-
lution of Eq. ~7! is trivial: ck01K(t)5ck01K(t50) as would
be expected on physical grounds: The waveguide modes
ing orthogonal, are uncoupled. The value ofck01K(t50)
may be evaluated for an arbitrary input pulse shape as
scribed in@9#:

ck01K~0!5
1

fk01K~0! H (
n51

`
2nR

bn
S E

0

` dt8

t8

3@E~z50,t8/Dv!2E~0,0!#Jn~ t8!D
3cos~nKR!1ck0

fk0
~0!J . ~8!
0-2
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For waveguides composed of a large number of reso
tors, we have derived a simpler expression@10#,

ck01K~0!5
2R

fk01K~0! (
n50

`
bn

2
cos@n~k01K !R#, ~9!

where

bn5H R21ck0
ufk0

~0!u, n50,

i 2n@E~z50,n/Dv!2E~0,0!#, n>1,
~10!

andck0
is given by Parseval’s relationship.

An example of the propagation of a~temporal! Gaussian
pulse through a coupled resonator waveguide with Gaus
functions describing the spatial distribution of the eige
modes is shown in Fig. 2. As may be expected from
dispersion relationship, distortion accumulates with distan
and is manifest in the oscillatory structure on the traili
edge of the pulse. The crest of the envelope travels with
approximate group velocityDz/Dt&DvR; an exact group
velocity is not defined since the dispersion relationship
nonlinear.

B. Nonlinear case

We separate the amplitude and phase ofck01K(t) as

ck01K~ t !5Ak01K~ t !exp@ ifk01K~ t !#. ~11!

We will look for solutions that retain their shape, i.e
dA/dt50. Substituting Eq.~11! into Eq. ~7! and separating
the real and imaginary parts, we obtain a pair of equatio

FIG. 2. Temporal evolution of a Gaussian envelope at spec
distances inside a CROW, showing the effects of dispersive pro
gation. ‘‘Distance’’ is normalized toR, the inter-resonator spacing
‘‘Time’’ is normalized to 1/Dv. The vertical axis representsuE(z,t
50)u normalized to its maximum value. At greater depths, the p
of the envelope arrives at a later time, and ripples in the trail
edge indicate higher-order distortion.
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dAk01K

dt
52gE E dK1

2p

dK2

2p
Ak01K1

Ak01K2
Ak01K3

sinF,

~12!

dfk01K

dt
5

g

Ak01K
E E dK1

2p

dK2

2p
Ak01K1

Ak01K2

3Ak01K3
cosF, ~13!

whereF is defined as

F[2$fk01K1
2kVt cos@~k01K1!R#%1$fk01K2

2kVt

3cos@~k01K2!R#%1$fk01K3
2kVtcos@~k01K3!R#%

2$fk01K2kVt cos@~k01K !R#%. ~14!

Based on Eq.~12!, the A’s will be independent oft if
sinF[0 for all t. This implies that cosF51, and based on
Eq. ~13!, we takefk01K to be a linear function oft,

fk01K~ t !5a1bt1kVt cos@~k01K !R#, ~15!

wherea andb are constants independent oft andK. We drop
the constanta which represents a fixed phase that can
absorbed into the initial conditions. Substituting this form f
fk01K(t) into Eq. ~13!, we get

b1kV cos@~k01K !R#

5
g

Ak01K
E E

2p/R

p/R dK1

2p

dK2

2p
Ak01K1

Ak01K2
Ak01K3

.

~16!

We will discuss numerical techniques to the solution
Eq. ~16! in a separate paper; here, we discuss a partic
regime in which there exist stationary solutions.

V. DISCUSSION: TIME-INVARIANT EVOLUTION AND
THE NONLINEAR SCHRÖ DINGER EQUATION

In this section, we will use the results from Sec. IV B
discuss in what regime the CROW admits solutions of
Schrödinger soliton form, i.e., the hyperbolic secant. The b
sic physics lie in a balance between the phase modula
effects of the Kerr effect and~anomalous! group-velocity
dispersion~GVD!. The GVD term in the nonlinear Schro¨-
dinger equation appears as the coefficient of a second de
tive term, which in the Fourier domain with the Fourier~fre-
quency! variableK, translates to multiplication by (iK )2.

In Eq. ~16!, if we assume thatk0R is a multiple of 2p and
uKRu!1, then we may write cos@(k01K)R#'12(KR)2/2,
which is the desired effective GVD term. Observe from t
dispersion relationship, Eq.~2!, that vk01K is a quadratic
function ofK only at the edges of the Brillouin zone—whe
dvk01K /dK vanishes, i.e., the group velocity is zero. W
expect, therefore, that the solutions of Eq.~16! in this regime
will be stationary, describing a localized state that is froze

c
a-

k
g
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in its initial (t50) spatial distribution and does not prop
gate along the waveguide.

Using this approxmation, Eq.~16! becomes

b1kV5kV
~KR!2

2
1

g

Ak01K
E E

2p/R

p/R dK1

2p

dK2

2p

3Ak01K1
Ak01K2

Ak01K3
. ~17!

We assume that theA’s are defined to be zero outside th
regions of integration2p/R and p/R so that the limits of
integration can be taken as2` to `. Equation~17! may
then be solved@12#,

Ak01K5Ak01K
(0) sech~K/K̄ !, ~18!

whereK̄ is a spectral width parameter whose relevance w
become clear in the following discussion. Substituting E
~18! into Eq. ~17!, we get

b1kV5kV
~KR!2

2
12@Ak01K

(0) #2
g

~2pR!2

3F ~KR!21S pK̄R

2
D 2G . ~19!

If b is to be independent ofK, then we need

Ak01K
(0) 5A2~2pR!2

kV

4g
. ~20!

Since the left-hand side represents a real and positive n
ber, we require thatk as defined in Eq.~3! be a negative
number~as is physically expected from the meaning ofewg
ande res). This is equivalent to anomalous dispersion in o
tical fibers and similar waveguides.

Using Eq.~15! and Eq.~20! in Eq. ~11!, we write the final
expression forck01K(t),

ck01K~ t !5ck01K~0!exp$2 ikVt@11p2~K̄R!2/8

2cos~KR!#%, ~21!

where

ck01K~0![2pRA2
kV

4g
sech~K/K̄ !, uKRu<p.

~22!

The field described by these coefficients is

E~r ,t !5e2 iv0te2 ikVt[11p2(K̄R)2/8]

3E
2p/R

p/R dK

2p
ck01K~0!fk01K~r !. ~23!

In light of Eq. ~22!, the integral on the second line of E
~23! is not expressible in a simpler form. However, ifK̄R
&1, the hyperbolic secant function decays rapidly, and
04661
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limits of integration may be changed to (2`,`). The inte-
gral then can be evaluated easily—the Fourier transform
hyperbolic secant is itself a hyperbolic secant function.
derive the approximation

E~r ,t !'e2 iv0te2 ikVt[11p2(K̄R)2/8]A2
kV

4g

3pK̄R(
n

sechS pK̄

2
nRDEres~r2nRẑ!. ~24!

The modulus of the amplitudeuE(z,t50)u normalized to its
maximum value~in this approximation! is plotted in Fig. 3.
Values of the hyperbolic secant function in Eq.~24! at nR
~which has the dimensions of length! are the weights of the
individual resonator eigenmodes. In this approximation,
envelope of these weights is a hyperbolic secant func
whose width is inversely proportional toK̄.

As we had expected from physical arguments, the en
lope of E(r ,t) is a stationary state that is independent
time: its spatial distribution att50 is maintained for all sub-
sequentt. This is consistent with the observation that a
though the group velocity dispersion coefficient is nonze
the group velocity itself is zero. We call the stationary stat
super-resonant field since it is formed in a waveguide t
itself comprises the coupling of individual~stationary! reso-
nator modes. There are two requirements for such a solut
~1! the slowly varying assumption, which simplifies Eq.~23!
to Eq. ~24! and ~2! the necessarycondition thatk0R is an
integer multiple of 2p.

Using Eq.~A6!, Eq. ~24! may be rephrased as an expre
sion for the individual-resonator coefficientsan(t),

FIG. 3. An approximate super-resonant field distribution,
suming that the individual resonator eigenmodes are Gauss
‘‘Position’’ is normalized toR, the inter-resonator spacing and th
ordinate representsuE(z,t50)u normalized to its maximum value
The dotted line is an envelope—a hyperbolic secant—connec
the excitation coefficients multiplying the individual resonat

eigenmodes. We have usedpK̄/25p/(4R).
0-4
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an~zn!5FA2
kV

4g
pK̄RGe2 imtsechS pK̄

2
znD , ~25!

wherem[kV@11p2(K̄R)2/8# is a constant frequency de
tuning andzn[nR is a discretization of the spatial axis.

Christodoulides and Efremedis@13# have analyzed this
problem using thean coefficients@see Eq.~A6!#. In contrast
with our analysis, they predict the existence of movi
hyperbolic-secant solitons as well as stationary solito
Their envelopes, similar to Eq.~25!, propagate with a group
velocity v[2kVR sinq, where q is a parameter that ap
pears in an assumed ansatz. The two solutions agree
whenv50 ~and thereforeq is not an undetermined param
eter!, and this solution does not propagate along the wa
guide. Using finite-difference time-domain calculations w
a nonlinear polarization term accounting for the Kerr effe
in coupled-defect waveguides, Iliewet al. @14# have shown
that there exist stable and localized~nonpropagating! enve-
lopes, similar to nonlinearly localized modes or discrete s
tons as found in discrete systems@15#. Propagating soliton-
type envelopes have not yet been found in numer
simulations.

The super-resonant mode in a CROW composed of h
Q resonators can have a long lifetime, since it decays w
the time constant associated with the quality factor of
isolated individual resonators@2# rather than the time con
stant associated with the coupling between high-Q resonators
and external waveguides. In addition, an optical pulse~with
nonzero group velocity! traveling down the waveguide ca
be made to interact with such a static distribution; their
teraction can be enhanced using quasi-phase-matching~grat-
ing! techniques@16#. This leads to the possibility of the ap
plication of these localized states for optical switching a
routing.

VI. CONCLUSION

We have investigated the effects of the optical Kerr no
linearity in coupled-resonator optical waveguides~CROWs!
with regard to the propagation of optical pulses. In particu
we have shown that there exists a stationary field distribu
of the hyperbolic secant form which balances the effects
group velocity dispersion and the Kerr self-phase modu
tion. This field distribution is closely related to the family o
gap solitons in periodic structures, but remains frozen
space with zero group velocity.

On the fundamental waveguiding aspects of the Kerr
fect, we have derived an equation closely related to the
quency representation of the nonlinear Schro¨dinger equation.
Our approach may also be used to describe any nonli
wave-mixing phenomena in all electromagnetic tight-bind
models.
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APPENDIX: EVOLUTION OF THE TIME-VARYING
COEFFICIENTS

We substitute Eq.~6! which describes the field in the
waveguide in terms of the time-varying coefficientsck01K(t)
into Maxwell’s equations written with an explicit nonlinea
polarization term describing the Kerr effect,

“3“3E~r ,t !2mewg~r !
]2

]t2
E~r ,t !5m

]2

]t2
PNL~r ,t !,

~A1!

where

PNL~r ,t !5
3

4
e0x (3)uE~r ,t !u2E~r ,t ! ~A2!

in the instantaneous response approximation.
In simplifying the terms, we use the normalization@16#

M(
m

E drewg~r !uEres~r2mRez!u251, ~A3!

where the CROW waveguide comprisesM resonators.
If we assume thatck01K(t) varies slowly over time inter-

vals;O(2p/v0), as is usually the case, then we obtain E
~7!. The nonlinearity coefficient is defined as

g52n0n2e0v0E dr(
m

uEres~r2mRez!u4, ~A4!

using the relationship 3x (3)/85n0n2 @17#, and we have ig-
nored the dispersion~variation inv) of g.

Equation~7! is equivalent to the differential equation

i
dan

dt
1

Da

2
Van2

k

2
V~an111an21!1guanu2an50,

~A5!

obtained by Christodoulides and Efremidis@13# for a related
set of coefficients,an(t), where

an~ t !5E
2p/R

p/R dK

2p
ck01K~ t !exp@ in~k01K !R#

3expF i H Da

2
V2kVcos@~k01K !R#J t G . ~A6!

The notational correspondence from our paper to their
(Da/2)V°Dv and2(k/2)V°c. The an’s are the coeffi-
cients that appear in the expansion of the field in terms
individual resonator modes, rather than the wavegu
modes. It is easily verified that substituting the plane-wa
ansatzan5exp$i@(V2vk01K)t2(k01K)nR#% in Eq. ~A5! with

n250 leads to the dispersion relationship, Eq.~2!.
This basis set consisting of individual resonator mode

not an orthonormal set, unlike our waveguide mod
$fk(r )exp(ivkt)%.
0-5
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